Different habitat condition proportions on farms affect the structure and diversity of dung beetle (Coleoptera, Scarabaeidae, Scarabaeinae) communities

Submitted: 1 November 2023
Accepted: 20 August 2024
Published: 3 October 2024
Abstract Views: 266
PDF: 105
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The continuous changes and increase of land use into ranching and agriculture have caused shifts in the composition and structure of dung beetle communities due to the modification of vegetation structure. The impact of these changes can be approached using dung beetles as ecological indicators. Agricultural, ranching, and forestry are often integrated into the same farm in different proportions (landscape level), and their degree of integration with habitats changes over time and space. We assessed if different habitat proportions of crop, pasture, and forest land on three farms affect the structure and diversity of dung beetle (Coleoptera: Scarabaeinae) communities. Farms included from three to four habitat conditions each (plantations of timber species, banana-coffee plantation, living fences, pastures, secondary and riparian forest). Pitfall traps with dung and carrion as bait were placed across each habitat condition of each farm during three different sampling periods. Across all samplings, 1,198 dung beetle individuals belonging to 21 species were captured. Species diversity and composition vary according to the type of farm and the main factor that modifies this tendency is the proportion of pasture land composing the farm. Farms with a lower proportion of grazing land (11.96% for forestry farms and 32.19% for agricultural farms) and denser vegetation canopy, which cast more shadows, had greater beetle diversity. Conversely, farms having a greater proportion of grazing land had low diversity and a dominant tendency in the species abundance curve. Umbraphile species dominated the forest farm, indicating a strong affinity for shaded environments such as the one provided there, while species displaying no habitat preference exhibited higher abundance in the ranching farm. Additionally, a notable prevalence of small-sized species was observed in the ranching farm, contrasting with a relatively even distribution of sizes in the remaining landscapes. These tendencies suggest that shade positively influences biodiversity conservation. Riparian vegetation, living fences, and banana-coffee plantations are important connectivity elements in agricultural landscapes for shade-adapted dung beetle species.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abas A. 2021. A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress, and challenges. Ecological Indicators. 121:107197. https://doi.org/10.1016/j.ecolind.2020.107197 DOI: https://doi.org/10.1016/j.ecolind.2020.107197
Alvarado F, Dáttilo W, Escobar F. 2019. Linking dung beetle diversity and its ecological function in a gradient of livestock intensification management in the Neotropical region. Applied Soil Ecology. 143:173–80. https://doi.org/10.1016/j.apsoil.2019.06.016 DOI: https://doi.org/10.1016/j.apsoil.2019.06.016
Alvarado F, Liberal CN, Dantas TA, Bérgamo DB, Menezes RF. 2021. Diversity and resource selection of dung beetles in a relictual mountain forest in Brazil. International Journal of Tropical Insect Science. 41:1343–53. https://doi.org/10.1007/s42690-020-00327-0 DOI: https://doi.org/10.1007/s42690-020-00327-0
Andonegi A, Garmendia E, Aldezabal A. 2021. Social multi-criteria evaluation for managing biodiversity conservation conflicts. Land Use Policy. 109:105658. https://doi.org/10.1016/j.landusepol.2021.105658 DOI: https://doi.org/10.1016/j.landusepol.2021.105658
Andresen E. 2008. Short‐term temporal variability in the abundance of tropical dung beetles. Insect Conservation and Diversity. 1:120–4. https://doi.org/10.1111/j.1752-4598.2008.00013.x DOI: https://doi.org/10.1111/j.1752-4598.2008.00013.x
Arellano L, Favila ME, Huerta C. 2005. Diversity of dung and carrion beetles in a disturbed Mexican tropical montane cloud forest and on shade coffee plantations. Biodiversity Conservation. 14:601–15. https://doi.org/10.1007/s10531-004-3918-3 DOI: https://doi.org/10.1007/s10531-004-3918-3
Arellano L, Gómez-Bautista C. 2021. Diversity of dung beetles in agro and silvopastoral systems of Úrsulo Galvan, Veracruz. Avances en Investigación Agropecuaria. 25:126–7. https://doi.org/10.53897/RevAIA.21.25.23 DOI: https://doi.org/10.53897/RevAIA.21.25.23
Arellano L, Halffter G. 2003. Gamma diversity: derived from and a determinant of Alpha diversity and Beta diversity. An analysis of three tropical landscapes. Acta Zoologica Mexicana. 90:27–76. https://doi.org/10.21829/azm.2003.902550 DOI: https://doi.org/10.21829/azm.2003.902550
Arellano L, León-Cortés JL, Halffter G. 2008a. Response of dung beetle assemblages and their conservation in remnant natural and modified habitats in southern Mexico. Insect Conservation Diversity. 1:253–62. https://doi.org/10.1111/j.1752-4598.2008.00033.x DOI: https://doi.org/10.1111/j.1752-4598.2008.00033.x
Arellano L, León-Cortés JL, Ovaskainen O. 2008b. Patterns of abundance and movement relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landscape Ecology. 23:69–78. https://doi.org/10.1007/s10980-007-9165-8 DOI: https://doi.org/10.1007/s10980-007-9165-8
Arellano L, Noriega JA, Ortega-Martínez I J, Rivera JD, Correa CM, Gómez-Cifuentes A, Ramírez-Hernández A, Barragán F. 2023. Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: A review of patterns and research trends of taxonomic and functional diversity, and functions. Frontiers in Ecology and Evolution. 11:1084009. https://doi.org/10.3389/fevo.2023.1084009 DOI: https://doi.org/10.3389/fevo.2023.1084009
Avendaño-Mendoza C, Morón-Ríos A, Cano EB, León-Cortés J. 2005. Dung beetle community (Coleoptera: Scarabaeidae: Scarabaeinae). Biodiversity Coservation. 14:801822. https://doi.org/10.1007/s10531-004-0651-x DOI: https://doi.org/10.1007/s10531-004-0651-x
Barragán F, Moreno CE, Escobar F, Bueno-Villegas J, Halffter G. 2014. The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. Journal of Biogeography. 41:1991–2002. https://doi.org/10.1111/jbi.12351 DOI: https://doi.org/10.1111/jbi.12351
Beiroz W, Barlow J, Slade EM, Borges C, Louzada, J, Sayer E. 2019. Biodiversity in tropical plantations is influenced by surrounding native vegetation but not yield: A case study with dung beetles in Amazonia. Forest Ecology and Management. 444:107–14. https://doi.org/10.1016/j.foreco.2019.04.036 DOI: https://doi.org/10.1016/j.foreco.2019.04.036
Bourg A, Escobar F, MacGregor-Fors I, Moreno CE. 2016. Got dung? Resource selection by dung beetles in neotropical forest fragments and cattle pastures. Neotropical Entomology. 45:490498. https://doi.org/10.1007/s13744-016-0397-7 DOI: https://doi.org/10.1007/s13744-016-0397-7
Bray D. 2005. Community forestry in Mexico: twenty lessons learned and four future pathways. In: Bray D, Merino L, Barry D, editors. The community forests of Mexico. managing for sustainable landscapes. The University of Texas Press; Austin, USA; p. 335–49. https://doi.org/10.7560/706378-016 DOI: https://doi.org/10.7560/706378-016
Bremer LL, Farley KA. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity Conservation. 19:3893–915. https://doi.org/10.1007/s10531-010-9936-4 DOI: https://doi.org/10.1007/s10531-010-9936-4
Broom DM, Galindo FA, Murgueitio E. 2013. Sustainable efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B. 280:2013–25. https://doi.org/10.1098/rspb.2013.2025 DOI: https://doi.org/10.1098/rspb.2013.2025
Capello V, Halffter G. 2019. Listado ilustrado de las especies de Scarabaeinae (Coleoptera: Scarabaeidae) de la Reserva de la Biósfera de Calakmul, Campeche, México. Dugesiana. 26:103–31. https://doi.org/10.32870/dugesiana.v26i2.7080 DOI: https://doi.org/10.32870/dugesiana.v26i2.7080
Castillo-Gallegos E, Jarillo-Rodríguez J, Escobar-Hernández R. 2018. Diameter-height relationships in three species grown together in a commercial forest plantation in eastern tropical Mexico. Revista Chapingo Serie Ciencias Forerstales y Ambientales. 24:33–48. https://doi.org/10.5154/r.rchscfa.2017.05.033 DOI: https://doi.org/10.5154/r.rchscfa.2017.05.033
Chao A, Ma KH, Hsieh TC. 2016. iNEXT (iNterpolation and EXTrapolation) Online: Software for Interpolation and Extrapolation of Species Diversity. Program and User’s Guide. Available from: http://chao.stat.nthu.edu.tw/wordpress/software_download/. https://doi.org/10.13140/RG.2.2.25777.79200
Cubbage F, Davis R, Paredes DR, Elsin YK, Mollenhauer R, Frey G. 2015. Timber Production Cost and Profit Functions for Community Forests in Mexico. In: Pancel L, Köhl M, editors. Tropical Forestry Handbook. Springer; Berlin, Germany; p. 1-19. https://doi.org/10.1007/978-3-642-41554-8_222-2 DOI: https://doi.org/10.1007/978-3-642-41554-8_222-1
Daniel GM, Noriega JA, Da Silva PG, Deschodt C M, Sole CL, Scholtz C H, Davis A. 2022. Soil type, vegetation cover and temperature determinants of the diversity and structure of dung beetle assemblages in a South African open woodland and closed canopy mosaic. Austral Ecology. 47:79–91. https://doi.org/10.1111/aec.13138 DOI: https://doi.org/10.1111/aec.13138
Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villéger S, Mouquet N. 2010. Defining and measuring ecological specialization. Journal of Applied Ecology. 47:15–25. https://doi.org/10.111 1/j.1365-2664.2009.01744.x DOI: https://doi.org/10.1111/j.1365-2664.2009.01744.x
Díaz A, Favila ME. 2009. Escarabajos coprófagos y necrófagos (Scarabaeidae, Trogidae y Silphidae) de la reserva de la biosfera Los Tuxtlas, México. In: Hernández-Ortiz V, Deloya C, Reyes P., editors. Memorias VIII Reunión Latinoamericana de Scarabaeidología. Veracruz, Mexico; p. 34.
Díaz-García J M, López-Barrera, F, Pineda E, Toledo-Aceves T, Andresen E. 2020. Comparing the success of active and passive restoration in a tropical cloud forest landscape: A multi-taxa fauna approach. PloS ONE. 15:e0242020. https://doi.org/10.1371/journal.pone.0242020 DOI: https://doi.org/10.1371/journal.pone.0242020
Doube BM. 1983. The habitat preference of some bovine dung beetles (Coleoptera: Scarabaeidae) in Hluhluwe Game Reserve, South Africa. Bulletin Entomology Research. 73:357–71. https://doi.org/10.1017/S0007485300008968 DOI: https://doi.org/10.1017/S0007485300008968
Edmonds WD.1998. Revision of Phanaeus MacLeay, a New World genus of Scarabaeinae dung beetles (Coleoptera: Scarabaeidae, Scarabaeinae). Contributions in Science. 443:1–107. https://doi.org/10.5962/p.208079 DOI: https://doi.org/10.5962/p.208079
Emmerson M, Morales M B, Oñate JJ, Batary P, Berendse F, Liira J, Aavik T, Guerrero I, Bommarco R, Eggers S, et al. 2016. How agricultural intensification affects biodiversity and ecosystem services. Advances in Ecological Research. 55:43–97. https://doi.org/10.1016/bs.aecr.2016.08.005 DOI: https://doi.org/10.1016/bs.aecr.2016.08.005
Estrada A, Coates-Estrada R. 2002. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodiversity Conservation. 11:1903–18. https://doi.org/10.1023/A:1020896928578 DOI: https://doi.org/10.1016/S0006-3207(01)00135-5
Estrada A, Coates-Estrada R, Anzurez A, Cammarano P. 1998. Dung and carrion beetles in tropical rain forest fragments and agricultural habitats at Los Tuxtlas, Mexico. Journal of Tropical Ecology. 14:577–93. https://doi.org/10.1017/S0266467498000418 DOI: https://doi.org/10.1017/S0266467498000418
Farías PM de, Arellano L, Hernández M, López-Ortiz S. 2015. Response of the copronecrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a Mexican tropical landscape. Journal of Insect Conservation. 19:947–60. https://doi.org/10.1007/s10841-015-9812-3 DOI: https://doi.org/10.1007/s10841-015-9812-3
Favila ME. 1993. Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera: Scarabaeidae): an experimental approach. Ethology Ecology & Evolution. 5:319–28. https://doi.org/10.1080/08927014.1993.9523019 DOI: https://doi.org/10.1080/08927014.1993.9523019
Favila ME. 2005. Diversidad alfa y beta de los escarabajos del estiércol (Scarabaeinae) en Los Tuxtlas, México. In: Halffter G, Soberón J, Koleff P, Melic A, editors. Sobre Diversidad Biológica: el Significado de las Diversidades Alfa, Beta y Gamma. M3m-Monografías 3ercer Milenio; Zaragoza, Spain; p. 209-19.
Favila ME, Halffter G. 1997. The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zoologica Mexicana. 72:1–25. https://doi.org/10.21829/azm.1997.72721734 DOI: https://doi.org/10.21829/azm.1997.72721734
Filazzola A, Brown C, Dettlaff MA, Batbaatar A, Grenke J, Bao T, Peetoom H, Cahill JF. 2020. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecology Letters. 23:1298–309. https://doi.org/10.1111/ele.13527 DOI: https://doi.org/10.1111/ele.13527
França FM, Frazão FS, Korasaki V, Louzada J, Barlow J. 2017. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation. 216:115–22. https://doi.org/10.1016/j.biocon.2017.10.014 DOI: https://doi.org/10.1016/j.biocon.2017.10.014
García E. 2004. Modificaciones al sistema de clasificación climática de Köppen. UNAM; Mexico City, Mexico; 97 pp.
Gardner T, Hernández M, Barlow J, Peres C. 2008. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. Journal of Applied Ecology. 45:883–93. https://doi.org/10.1111/j.1365-2664.2008.01454.x DOI: https://doi.org/10.1111/j.1365-2664.2008.01454.x
Giménez-Gómez V, Verdú, J, Gómez-Cifuentes A, Vaz-de-Mello F, Zurita A. 2018. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic Forest of Argentina. Journal of Insect Conservation. 11:554–64. https://doi.org/10.1111/icad.12299 DOI: https://doi.org/10.1111/icad.12299
Giménez-Gómez V, Verdú, J, Gómez-Cifuentes A, Vaz-de-Mello FZ, Zurita A. 2020. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Scientific Reports. 10:13364. https://doi.org/10.1038/s41598-020-70284-8 DOI: https://doi.org/10.1038/s41598-020-70284-8
Giraldo C, Escobar F, Chara JD, Calle Z. 2011. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conservation Diversity. 4:115–22. https://doi.org/10.1111/j.1752-4598.2010.00112.x DOI: https://doi.org/10.1111/j.1752-4598.2010.00112.x
Gómez-Cifuentes A, Huerta C, Zurita GA, Arellano, L. 2022. The influence of biodiversity-friendly ranching practices on dung beetle diversity in a Mexican mountainous tropical landscape. Journal of Insect Conservation. 26:721–30. https://doi.org/10.1007/s10841-022-00414-2. DOI: https://doi.org/10.1007/s10841-022-00414-2
Gray CL, Slade EM, Mann DJ, Lewis OT. 2014. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes? Ecology & Evolution. 4:1049–60. https://doi.org/10.1002/ece3.1003 DOI: https://doi.org/10.1002/ece3.1003
Halffter G, Arellano L. 2002. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica. 34:144–54. https://doi.org/10.1111/j.1744-7429.2002.tb00250.x DOI: https://doi.org/10.1111/j.1744-7429.2002.tb00250.x
Halffter G, Edmonds WD. 1982. The nesting behavior of dung beetles (Scarabaeinae). INECOL; Mexico City, Mexico; 167 pp.
Halffter G, Favila ME. 1993. The Scarabaeinae an Animal Group for Analyzing, inventorying and Monitoring Biodiversity in Tropical Rainforest and Modified Landscapes. Biology International. 27:15–21.
Halffter G, Pineda E, Arellano L, Escobar F. 2007 Instability of copronecrophagus beetle assemblages (Coleoptera: Scarabaeinae) in a mountainous tropical landscape of Mexico. Environmental Entomology. 36:1397–407. https://doi.org/10.1603/0046-225x(2007)36[1397:iocbac]2.0.co;2. DOI: https://doi.org/10.1603/0046-225X(2007)36[1397:IOCBAC]2.0.CO;2
Hall A, Miller A, Leggett H, Roxburgh S, Buckling A, Shea K. 2012. Diversity–disturbance relationships: frequency and intensity interact. Biology Letters. 8:768–71. https://doi.org10.1098/rsbl.2012.0282 DOI: https://doi.org/10.1098/rsbl.2012.0282
Hansen AJ, DeFries RS, Turner W. 2012. Land use change and biodiversity. In: Gutman G, Janetos A, Justice C, Moran E, Mustard J, Rindfuss R, Skole D, Turner B, Cochrane M, editors. Remote Sensing and Digital Image Processing. Springer; Dordrecht, The Netherlands; p. 277–99. https://doi.org/10.1007/978-1-4020-2562-4_16 DOI: https://doi.org/10.1007/978-1-4020-2562-4_16
Harada, L, Araújo I, Overal W, Silva F. 2020. Comparison of dung beetle communities (Coleoptera: Scarabaeidae: Scarabaeinae) in oil palm plantations and native forest in the eastern Amazon, Brazil. Revista Brasileira de Entomologia. 64:e2019102. https://doi.org/10.1590/1806-9665-RBENT-2019-102 DOI: https://doi.org/10.1590/1806-9665-rbent-2019-102
Harvey C, Villanueva C, Villacís J, Chacón M, Muñoz D, López M, Ibrahim M, Gómez R, Taylor R, Martínez J, et al. 2005. Contribution of live fences to the ecological integrity of agricultural landscapes. Agriculture, Ecosystem & Environment. 111:200–230. https://doi.org/10.1016/j.agee.2005.06.011 DOI: https://doi.org/10.1016/j.agee.2005.06.011
Hernández M, Barreto P, Costa V, Creão-Duarte A, Favila M. 2013. Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. Journal of Insect Conservation. 18:539–46. https://doi.org/10.1007/s10841-014-9645-5 DOI: https://doi.org/10.1007/s10841-014-9645-5
Hernández-Molina MA, Sánchez-Hernández G, Chamé-Vázquez ER, Noriega JA, Tejeda-Cruz C. 2023. Importance of live fences for dung beetle assemblage connectivity in a fragmented landscape. International Journal of Tropical Insect Science (Preprint). https://doi.org/10.21203/rs.3.rs-3118198/v1 DOI: https://doi.org/10.21203/rs.3.rs-3118198/v1
Hill MO. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology. 54:427–32. https://doi.org/10.2307/1934352 DOI: https://doi.org/10.2307/1934352
Horgan F, Fuentes R. 2005. Asymmetrical competition between Neotropical dung beetles and its consequences for assemblage structure. Ecological Entomology. 30:82–193. https://doi.org/10.1111/j.0307-6946.2005.00673.x DOI: https://doi.org/10.1111/j.0307-6946.2005.00673.x
Huerta C, García-Hernández M. 2013. Nesting behaviour of Onthophagus incensus Say, 1835 (Coleoptera: Scarabaeidae: Scarabaeinae) Coleopterist Bulletin. 67:161–6. http://dx.doi.org/10.1649/0010-065X-67.2.161 DOI: https://doi.org/10.1649/0010-065X-67.2.161
Huerta C, Martínez I., García-Hernández M. 2010. Preimaginal development of Onthophagus incensus Say, 1835 (Coleoptera: Scarabaeidae: Scarabeinae). Coleopterist Bulletin. 64:365–71. https://doi.org/10.1649/0010-065X-64.4.365 DOI: https://doi.org/10.1649/0010-065X-64.4.365
Imron M, Campera M, Al Bihad D, Rachmawati F, Nugroho F, Budiadi B, Wianti KF, Suprapto E, Nijman V, Nekaris KA. Bird assemblages in coffee agroforestry systems and other human modified habitats in Indonesia. Conservation Biology and Biodiversity. 11:310. https://doi.org/10.3390/biology11020310 DOI: https://doi.org/10.3390/biology11020310
INEGI. 2009a. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Tlapacoyan, Veracruz. Available from: https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/30/30183.pdf
INEGI. 2009b. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Hueytamalco, Puebla. Available from: https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/21/21076.pdf
Inward D, Davies R, Pergande C, Denham A, Vogler A. 2011. Local and regional ecological morphology of dung beetle assemblages across four biogeographic regions Journal of Biogeography. 38:1668–82. https://doi.org/10.1111/j.1365-2699.2011.02509.x DOI: https://doi.org/10.1111/j.1365-2699.2011.02509.x
Kassambara A, Mundt F. 2020. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. Available from: https://CRAN.R-project.org/package=factoextra
Kindt R, Coe R. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF); Nairobi, Kenya; 153 pp.
Klemperer HG. 1986. Life history and parental behaviour of a dung beetle from neotropical rainforest, Copris laeviceps (Coleoptera, Scarabaeidae). Journal of Zoology. 209:319–26. https://doi.org/10.1111/j.1469-7998.1986.tb03594.x DOI: https://doi.org/10.1111/j.1469-7998.1986.tb03594.x
Kohlman B. Solís A. 2006. El género Canthidium (Coleoptera: Scarabaeidae) en Norteamérica. Giornale Italiano di Entomologia. 11:235–95.
Laliberté E, Legendre P, Shipley B. 2015. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. Available from: https://cran.r-project.org/web/packages/FD/FD.pdf
Larsen TH, Forsyth A. 2005. Trap spacing and transect design for dung beetle biodiversity studies. Biotropica. 37:322–5. https://doi.org/10.1111/j.1744-7429.2005.00042.x DOI: https://doi.org/10.1111/j.1744-7429.2005.00042.x
Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A. 2008. Assessing functional diversity in the field - methodology matters! Functional Ecology. 22:134–47. https://doi.org/10.1111/j.1365-2435.2007.01339.x DOI: https://doi.org/10.1111/j.1365-2435.2007.01339.x
Lê S, Josse J, Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software. 25:1–18. https://doi.org/10.18637/jss.v025.i01 DOI: https://doi.org/10.18637/jss.v025.i01
Levia J, Sobrino-Mengual G. 2022. Cattle dung and bioturbation by dung beetles improve oak seedlings establishment in Mediterranean silvopastoral ecosystem. New Forests. 54:289–309. https://doi.org/10.1007/s11056-022-09922-0 DOI: https://doi.org/10.1007/s11056-022-09922-0
Lobo JM, Cuesta E. 2021. Seasonal variation in the diel activity of a dung beetle assemblage. PeerJ. 9:e11786. https://doi.org/10.7717/peerj.11786 DOI: https://doi.org/10.7717/peerj.11786
Lobo JM, Da Silva P, Hensen M, Amore V, Hernández M. 2019. Exploring the predictive performance of several temperature measurements on Neotropical dung beetle assemblages: Methodological implications. Entomological Science. 22:56–63. https://doi.org/10.1111/ens.12340 DOI: https://doi.org/10.1111/ens.12340
Lobo JM, Lumaret, JP, Jay-Robert P. 1998. Sampling dung beetles in the French Mediterranean area: effects of abiotic factors and farm practices. Pedobiologia. 42:252–66. DOI: https://doi.org/10.1016/S0031-4056(24)00456-6
Lopes LB, Pitta RM, Eckstein C, Pedreira BCE, Grossi PC, Sindeaux E, Peruffo RG, Cornelissen TG. 2020. Diversity of coleopterans associated with cattle dung in open pastures and silvopastoral systems in the Brazilian Amazon. Agroforestry Systems. 94:2277–87. https://doi.org/10.1007/s10457-020-00549-8 DOI: https://doi.org/10.1007/s10457-020-00549-8
López-Cruz A, Soto-Pinto L, Salgado-Mora MG, Huerta-Palacios G. 2021. Simplification of the structure and diversity of cocoa agroforests does not increase yield nor influence frosty pod rot in El Soconusco, Chiapas, México. Agroforestry Systems. 95:201–14. https://doi.org/10.1007/s10457-020-00574-7 DOI: https://doi.org/10.1007/s10457-020-00574-7
Macedo R, Dorneles L, Korasaki V, Louzada J. 2020. Conversion of Cerrado savanas into exotic pastures: The relative importance of vegetation and food resources for dung beetle assemblages. Agriculture, Ecosystems & Environment. 288:106709. https://doi.org/10.1016/j.agee.2019.106709 DOI: https://doi.org/10.1016/j.agee.2019.106709
Martínez I, Ramírez-Hernández A, Lumaret J. 2017. Medicinas veterinarias, plaguicidas y los escarabajos del estiércol en la zona tropical de Palma Sola, Veracruz, México. SouthWestern Entomologist. 42:563–74. https://doi.org/10.3958/059.042.0225 DOI: https://doi.org/10.3958/059.042.0225
Martínez M, Huerta C, Cruz M. 1996. Comportamiento reproductor en hembras de Copris incertus Say (Coleoptera, Scarabaeidae). Bulletin de la Société entomologique de France. 101:121–30. https://doi.org/10.3406/bsef.1996.17225 DOI: https://doi.org/10.3406/bsef.1996.17225
Martínez N, García H, Pulido L, Ospino D, Narváez J. 2009. Escarabajos coprófagos (Coleoptera: Scarabaeinae) de la vertiente noroccidental, Sierra Nevada de Santa Marta, Colombia. Neotropical Entomology. 38:708–15. https://doi.org/10.1590/S1519-566X2009000600002 DOI: https://doi.org/10.1590/S1519-566X2009000600002
Martínez-Falcón AP, Zurita GA, Ortega-Martínez IJ, Moreno C. 2018. Populations and assemblages living on the edge: dung beetles’ responses to forests-pasture ecotones. PeerJ. 6:e6148. https://doi.org/10.7717/peerj.6148 DOI: https://doi.org/10.7717/peerj.6148
MacArthur R, Levins R. 1964. Competition, habitat selection, and character displacement in a patchy environment. Proceedings of the National Academy of Sciences. 51:1207–10. https://doi.org/10.1073/pnas.51.6.1207 PMID:14215645 DOI: https://doi.org/10.1073/pnas.51.6.1207
Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Chará J, Escobar F, Calle Z. 2016. Land sharing vs. land sparing in the dry Caribbean lowlands: A dung beetles’ perspective. Applied Soil Ecology. 98:204 –12. https://doi.org/10.1016/j.apsoil.2015.10.017 DOI: https://doi.org/10.1016/j.apsoil.2015.10.017
Mora-Aguilar EF, Arriaga-Jiménez A, Correa CM, da Silva PG, Korasaki V, López-Bedoya PA, ... Noriega JA. 2023. Toward a standardized methodology for sampling dung beetles (Coleoptera: Scarabaeinae) in the Neotropics: A critical review. Frontiers in Ecology and Evolution. 11. https://doi.org/10.3389/fevo.2023.1096208 DOI: https://doi.org/10.3389/fevo.2023.1096208
Moreno CE, Barragán F, Pineda E, Pavón NP. 2011. Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad. 82:1249–61. http://dx.doi.org/10.22201/ib.20078706e.2011.4.745 DOI: https://doi.org/10.22201/ib.20078706e.2011.4.745
Navarrete D, Halffter G. 2008. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: the effects of anthropogenic changes. Biodiversity and Conservation. 17:2869–98. https://doi.org/10.1007/s10531-008-9402-8 DOI: https://doi.org/10.1007/s10531-008-9402-8
Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, The Scarabaeinae Research Network. 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation. 141:1461–74. https://doi.org/10.1016/j.biocon.2008.04.011 DOI: https://doi.org/10.1016/j.biocon.2008.04.011
Niino M, Hosaka T, Kon M, Ochi T, Yamada T, Okuda T. 2014. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bulletin of Zoology. 62:795–804.
Noriega JA, March-Salas M, Castillo S, García-Q H, Hortal J, Santos AM. 2021. Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica. 53:753–66. https://doi.org/10.1111/btp.12953 DOI: https://doi.org/10.1111/btp.12953
Noriega JA, Palacio JM, Monroy GJD, Valencia E. 2012. Estructura de un ensamblaje de escarabajos coprófagos (Coleoptera: Scarabaeinae) en tres sitios con diferente uso del suelo en Antioquia, Colombia. Actualidades Biologicas. 34:43–54. https://doi.org/10.17533/udea.acbi.14241 DOI: https://doi.org/10.17533/udea.acbi.14241
Ortiz-García S, Saynes S, Bunge V, Anglés-Hernández M, Pérez M, Prado B. 2022. Soil governance and sustainable agriculture in Mexico. Soil Security. 7:100059. https://doi.org/10.1016/j.soisec.2022.100059 DOI: https://doi.org/10.1016/j.soisec.2022.100059
Paiboon N, Aroon S, Thanee N, Jitpukdee S, Tantipanatip W. 2018. Dung beetle assemblages in three human-modified landscapes in northeastern Thailand. International Journal of Agriculture Technology. 14:1574–82.
Pulido-Santacruz P, Renjifo LM. 2011. Live fences as tools for biodiversity conservation: a study case with birds and plants. Agroforestry Systems. 81:15–30. https://doi.org/10.1007/s10457-010-9331-x DOI: https://doi.org/10.1007/s10457-010-9331-x
Ramette A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology. 62:142–60. https://doi.org/10.1111/j.1574-6941.2007.00375.x DOI: https://doi.org/10.1111/j.1574-6941.2007.00375.x
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/.
Reyes Novelo E, Delfin-González H, Morón MA. 2007. Copro-necfophagous beetle (Coleoptera: Scarabaeidae) diversity in an agroecosystem in Yucatan, Mexico. Revista de Biología Tropical. 55:83–99. https://doi.org/10.15517/rbt.v55i1.6059 DOI: https://doi.org/10.15517/rbt.v55i1.6059
Rivera JD, Favila ME. 2022. Good news! Sampling intensity needed for accurate assessments of dung beetle diversity may be lower in the Neotropics. Frontiers in Ecology and Evolution. 10:999488. https://doi.org/10.3389/fevo.2022.999488 DOI: https://doi.org/10.3389/fevo.2022.999488
Romero-Alvarado Y, Soto-Pinto L, García-Barrios L, Barrera-Gaytan JF. 2002. Coffee yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas, Mexico. Agroforestry Systems. 54:215–22. https://doi.org/10.1023/A:1016013730154 DOI: https://doi.org/10.1023/A:1016013730154
Rös M, Escobar F, Halffter G. 2012. How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: a study of biodiversity integrating ecological and biogeographical perspectives. Diversity Distribution. 18:377–89. https://doi.org/10.1111/j.1472-4642.2011.00834.x DOI: https://doi.org/10.1111/j.1472-4642.2011.00834.x
Ruiz-Pérez I, León-Cortés J, Arellano L, Navarrete D. 2019. Manejo forestal comunitario en el sur de México: ¿es una práctica sustentable para el mantenimiento de ensambles de escarabajos? Revista Mexicana de Biodiversidad. 90:e902564. http://dx.doi.org/10.22201/ib.20078706e.2019.90.2564 DOI: https://doi.org/10.22201/ib.20078706e.2019.90.2564
Santos-Heredia C, Andresen E, Zárate D A, Escobar F. 2018. Dung beetles and their ecological functions in three agroforestry systems in the Lacandona rainforest of Mexico. Biodiversity Conservation. 27:2379–94. https://doi.org/10.1007/s10531-018-1542-x DOI: https://doi.org/10.1007/s10531-018-1542-x
Shahabuddin, Hidayat P, Manuwoto S, Noerdjitot W, Tscharntke T, Schulze C. 2009. Diversity and body size of dung beetles attracted to different dung types along a tropical land-use gradient in Sulawsi, Indonesia. Journal of Tropical Ecology. 26:53–65. https://doi.org/10.1017/S0266467409990423 DOI: https://doi.org/10.1017/S0266467409990423
Scheffler PY. 2005. Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. Journal of Tropical Ecology. 21:9–19. https://doi.org/10.1017/S0266467404001683 DOI: https://doi.org/10.1017/S0266467404001683
Shepherd B, Prang H, Moczek A. 2008. Some like it hot: Body and weapon size affect thermoregulation in horned beetles. Journal of Insect Physiology. 54:604–11. https://doi.org/10.1016/j.jinsphys.2007.12.007 DOI: https://doi.org/10.1016/j.jinsphys.2007.12.007
Shmida A, Wilson M. 1985. Biological determinants of species diversity. Journal of Biogeography. 12:1–20. https://doi.org/10.2307/2845026. DOI: https://doi.org/10.2307/2845026
Tilman D. 2001. Functional diversity. In: Levin SA, Encyclopedia of biodiversity. Volume 3. Elsevier Science; Amsterdam, The Netherlands; p.109–20. DOI: https://doi.org/10.1016/B0-12-226865-2/00132-2
Tonelli, M. 2021. Some considerations on the terminology applied to dung beetle functional groups. Ecological Entomology. 46:772–6. https://doi.org/10.1111/een.13017 DOI: https://doi.org/10.1111/een.13017
Tsonkova P, Mirck J, Böhm C, Fütz B. 2018. Addressing farmer-perceptions and legal constraints to promote agroforestry in Germany. Agroforestry Systems. 92:1091–103. https://doi.org/10.1007/s10457-018-0228-4 DOI: https://doi.org/10.1007/s10457-018-0228-4
Turner IM. 1996. Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology. 33:200–9. https://doi.org/10.2307/2404743 DOI: https://doi.org/10.2307/2404743
Udawatta RP, Rankoth L, Jose S. 2019. Agroforestry and biodiversity. Sustainability. 11:2879. https://doi.org/10.3390/su11102879 DOI: https://doi.org/10.3390/su11102879
Verdú J, Arellano L, Numa C. 2006. Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. Journal of Insect Physiology. 52:854–60. https://doi.org/10.1016/j.jinsphys.2006.05.005 DOI: https://doi.org/10.1016/j.jinsphys.2006.05.005
Verdú J, Arellano L, Numa C, Micó E. 2007. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecological Entomology. 35:544–51. https://doi.org/10.1111/j.1365-2311.2007.00907.x DOI: https://doi.org/10.1111/j.1365-2311.2007.00907.x
Villada-Bedoya S, Cultid-Medina C, Escobar F, Guevara R, Zurita G. 2017. Edge effects on dung beetle assemblages in an Andean mosaic of forest and coffee plantations. Biotropica. 49:195–205. https://doi.org/10.1111/btp.12373 DOI: https://doi.org/10.1111/btp.12373
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional. Oikos. 116(5):882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x DOI: https://doi.org/10.1111/j.0030-1299.2007.15559.x
Zamora P, Avendaño-Reyes S, Coates R, Gómez J A, Lascurain M, García-Guzmán G, López-Acosta J. 2022. Live fences as refuges of wild and useful plant diversity: Their drivers and structure in five elevation contrast sites of Veracruz, México. Tropical Conservation Science. 15:1–22. https://doi.org/10.1177/19400829221078489 DOI: https://doi.org/10.1177/19400829221078489

How to Cite

Tec Pardillo, R., Arellano, L., López-Ortiz, S., Jarillo Rodríguez, J., Ortega Martínez, I. J., Mendoza Briseño, M. A., & Vargas Mendoza, M. de la C. (2024). Different habitat condition proportions on farms affect the structure and diversity of dung beetle (Coleoptera, Scarabaeidae, Scarabaeinae) communities. Tropical Zoology, 37(3-4). https://doi.org/10.4081/tz.2024.150